Stem Cells for Type 1 Diabetes: Mechanisms and Clinical Evidence
Introduction Type 1 diabetes (T1DM) is an autoimmune disease characterized by destruction of pancreatic β-cells, leading to absolute insulin deficiency and lifelong dependence on exogenous insulin. Chronic hyperglycemia can cause serious complications, including nephropathy, retinopathy, neuropathy, and cardiovascular disease. Conventional therapy manages blood glucose but does not restore β-cell function or halt autoimmune attack. Stem cell therapy has emerged as a promising regenerative approach, aiming to replace lost β-cells, modulate the immune system, and restore endogenous insulin secretion.
DIABETES
Stem Cells for Type 1 Diabetes: Mechanisms and Clinical Evidence
1/19/20252 min read
Stem Cells for Type 1 Diabetes: Mechanisms and Clinical Evidence
Introduction
Type 1 diabetes (T1DM) is an autoimmune disease characterized by destruction of pancreatic β-cells, leading to absolute insulin deficiency and lifelong dependence on exogenous insulin. Chronic hyperglycemia can cause serious complications, including nephropathy, retinopathy, neuropathy, and cardiovascular disease. Conventional therapy manages blood glucose but does not restore β-cell function or halt autoimmune attack.
Stem cell therapy has emerged as a promising regenerative approach, aiming to replace lost β-cells, modulate the immune system, and restore endogenous insulin secretion.
Mechanisms of Action
β-Cell Replacement and Regeneration
Pluripotent stem cells (iPSCs, ESCs) can be differentiated into insulin-producing β-like cells.
Transplanted stem cells can homing to the pancreas, integrate into islets, and secrete insulin in response to blood glucose levels (Zhang et al., 2009; Pagliuca et al., 2014).
Immunomodulation
T1DM involves autoimmune destruction of β-cells.
Mesenchymal stem cells (MSCs) modulate T-cell and B-cell activity, increase regulatory T cells (Tregs), and suppress autoreactive immune responses, potentially slowing further β-cell loss (Ezquer et al., 2012).
Anti-Inflammatory Effects
MSCs secrete cytokines such as IL-10 and TGF-β, reduce insulitis, and protect residual β-cells from apoptosis (Carlsson et al., 2015).
Exosome-Mediated Support
Stem cell-derived extracellular vesicles carry miRNAs and proteins that promote β-cell survival, proliferation, and function, offering a cell-free therapeutic option with lower risk of immune rejection (Simeoni & Bogdani, 2021).
Clinical Evidence
Autologous MSC Transplantation
Several studies report improved C-peptide levels, reduced exogenous insulin requirements, and decreased HbA1c in T1DM patients receiving autologous bone marrow or umbilical cord MSCs (Hu et al., 2013; Carlsson et al., 2015).
iPSC/ESC-Derived β-Cell Therapy
Phase I/II trials of encapsulated stem cell-derived β-cells show glycemic control without severe hypoglycemia and partial insulin independence in some patients (Rezania et al., 2014).
Combination Approaches
Combining MSCs with immunomodulatory therapy (e.g., anti-CD3 antibodies) enhances β-cell protection and function recovery (Couri et al., 2009).
Conclusion
Stem cell therapy for T1DM addresses the root cause of the disease: β-cell loss and autoimmunity. By replacing β-cells, modulating immune responses, and reducing inflammation, stem cells offer the potential to restore endogenous insulin production, reduce exogenous insulin dependence, and slow disease progression. While long-term efficacy requires further large-scale trials, current studies demonstrate promising safety and clinical benefits.
Key References:
Zhang D, et al. Differentiation of human embryonic stem cells into insulin-producing cells. Cell Res. 2009;19:429–438.
Pagliuca FW, et al. Generation of functional human pancreatic β cells in vitro. Cell. 2014;159:428–439.
Ezquer F, et al. MSCs restore pancreatic function in diabetic mice through immunomodulation. Diabetes. 2012;61:2826–2836.
Hu J, et al. Clinical study of MSC therapy in type 1 diabetes. Stem Cells Int. 2013;2013:120649.
Carlsson PO, et al. MSCs in type 1 diabetes: clinical outcomes. Diabetes Metab Res Rev. 2015;31:242–249.
Rezania A, et al. Maturation of stem cell-derived β cells for therapy. Diabetes. 2014;63:2016–2029.
Simeoni E, Bogdani M. Exosome-based therapies in diabetes. Front Immunol. 2021;12:720.
Couri CE, et al. Combination of immunotherapy and MSC therapy in T1DM. Diabetes. 2009;58:2173–2181.
中文版本 — 干细胞为何对1型糖尿病有效
引言
1型糖尿病(T1DM)是一种自身免疫性疾病,特征为胰岛β细胞破坏,导致绝对性胰岛素缺乏,需要终身外源性胰岛素治疗。长期高血糖可引起肾病、视网膜病变、神经病变及心血管疾病。传统治疗只能控制血糖,无法恢复β细胞功能或阻止免疫破坏。
干细胞疗法通过替代β细胞、调节免疫、恢复内源性胰岛素分泌,成为T1DM研究的热点。
作用机制
β细胞替代与再生
多能干细胞(iPSCs、ESCs)可分化为胰岛素分泌细胞。
移植后可归巢胰腺、整合入胰岛,随血糖变化分泌胰岛素(Zhang et al., 2009; Pagliuca et al., 2014)。
免疫调节
MSCs调节T细胞和B细胞活性,增加调节性T细胞(Tregs),抑制自身免疫反应,延缓β细胞破坏(Ezquer et al., 2012)。
抗炎作用
MSCs分泌IL-10、TGF-β等,减少胰岛炎症,保护残余β细胞免于凋亡(Carlsson et al., 2015)。
外泌体介导支持
干细胞外泌体含miRNA及蛋白,可促进β细胞存活和功能,为无细胞治疗提供低免疫排斥风险方案(Simeoni & Bogdani, 2021)。
临床研究证据
自体MSC移植
骨髓或脐带MSC移植可改善C肽水平、降低胰岛素用量,并改善HbA1c(Hu et al., 2013; Carlsson et al., 2015)。
iPSC/ESC衍生β细胞疗法
封装移植的干细胞衍生β细胞可控制血糖,部分患者实现部分胰岛素独立(Rezania et al., 2014)。
联合疗法
MSC联合免疫调节(如抗CD3抗体)可增强β细胞保护及功能恢复(Couri et al., 2009)。
结论
干细胞疗法针对T1DM根本问题:β细胞丢失与自身免疫。通过β细胞替代、免疫调节及抗炎,干细胞有望恢复内源性胰岛素分泌、减少外源性胰岛素依赖、延缓疾病进程。虽然仍需长期大规模临床验证,但现有研究显示安全性良好,且临床效果初步可观。
Connect
Expertise in stem cell therapies across Asia.
R&d Support
Contact
+86 19852875516
© 2025. All rights reserved.