Stem Cell Therapy for Diabetes: Mechanisms and Clinical Rationale
Introduction Diabetes mellitus, including type 1 (T1DM) and type 2 (T2DM), is characterized by β-cell dysfunction or loss, chronic hyperglycemia, and systemic metabolic disturbances. Conventional therapies—insulin injections, oral hypoglycemics, and lifestyle management—primarily control blood glucose but do not address the root cause: impaired or absent insulin-producing β-cells. Stem cell therapy offers a regenerative and disease-modifying approach. By replacing lost β-cells, modulating immunity, and improving systemic metabolic function, stem cells can potentially restore endogenous insulin secretion and improve glycemic control.
DIABETES
Stem Cell Therapy for Diabetes
8/15/20252 min read
1. Mechanisms of Action
β-Cell Regeneration and Replacement
Pluripotent stem cells (iPSCs, ESCs) and pancreatic progenitors can differentiate into insulin-producing β-like cells.
Transplanted stem cells can home to pancreatic tissue, integrate into islets, and respond to blood glucose fluctuations (Pagliuca et al., 2014; Zhu et al., 2016).
Immune Modulation
T1DM involves autoimmune destruction of β-cells, and T2DM often features chronic low-grade inflammation.
Mesenchymal stem cells (MSCs) regulate T-cell and B-cell responses, increase regulatory T cells (Tregs), and suppress autoimmunity, protecting residual β-cells (Ezquer et al., 2012).
Anti-Inflammatory Effects
MSCs secrete cytokines such as IL-10 and TGF-β, reducing pancreatic inflammation and preserving β-cell viability (Carlsson et al., 2015).
Enhancing Insulin Sensitivity
MSCs release exosomes and growth factors that improve glucose uptake in peripheral tissues, supporting metabolic balance (Zhou et al., 2016).
Tissue Repair and Angiogenesis
MSCs promote vascularization via VEGF secretion, improving pancreatic microcirculation and creating a supportive environment for β-cells.
2. Clinical Evidence
T1DM: Autologous or allogeneic MSC transplantation improves C-peptide levels, reduces exogenous insulin requirements, and partially restores glycemic control (Hu et al., 2013; Carlsson et al., 2015).
T2DM: Umbilical cord-derived MSCs or bone marrow MSCs improve fasting glucose, HbA1c, and insulin sensitivity, allowing some patients to reduce medication or insulin (Hu et al., 2016).
Encapsulated stem cell-derived β-cells show glucose-responsive insulin secretion without severe hypoglycemia in early-phase trials (Rezania et al., 2014).
3. Why Stem Cells Are Effective in Diabetes
Targeting root causes: Unlike insulin therapy, stem cells regenerate β-cells and modulate autoimmunity.
Multi-modal benefits: Immunomodulation, anti-inflammation, tissue repair, and metabolic improvement.
Potential for long-term glycemic control: Stem cells may reduce or eliminate the need for exogenous insulin in some patients.
Personalized therapy: Autologous or gene-edited stem cells can minimize immune rejection and optimize outcomes.
Conclusion
Stem cell therapy offers a scientifically supported, multi-dimensional approach to treating diabetes. By restoring β-cell function, modulating immune responses, and improving insulin sensitivity, stem cells provide a pathway toward functional improvement or reverse the diabetes, complementing conventional therapies and advancing the field of regenerative diabetes treatment.
References
Pagliuca FW, et al. Cell. 2014;159:428–439.
Zhu S, et al. Nature. 2016;539:383–387.
Ezquer F, et al. Diabetes. 2012;61:2826–2836.
Hu J, et al. Stem Cells Int. 2013;2013:120649.
Carlsson PO, et al. Diabetes Metab Res Rev. 2015;31:242–249.
Zhou Y, et al. Cell Metab. 2016;23:121–132.
Rezania A, et al. Diabetes. 2014;63:2016–2029.
中文版本 — 干细胞在糖尿病治疗中的作用与原理
引言
糖尿病(T1DM和T2DM)以β细胞功能损伤或丢失、慢性高血糖和系统性代谢紊乱为特征。传统治疗(胰岛素注射、口服药物、生活方式干预)只能控制血糖,而不能解决β细胞缺失或功能下降的根本问题。
干细胞疗法提供了一种再生和疾病修复性的治疗手段。通过替代β细胞、调节免疫、改善代谢功能,干细胞有望恢复内源性胰岛素分泌,改善血糖控制。
1. 作用机制
β细胞再生与替代
多能干细胞(iPSCs/ESCs)及胰腺前体细胞可分化为胰岛素分泌细胞。
移植后可归巢胰腺,整合入胰岛,随血糖变化分泌胰岛素(Pagliuca et al., 2014; Zhu et al., 2016)。
免疫调节
T1DM为自身免疫破坏β细胞,T2DM存在慢性低度炎症。
MSCs可调节T细胞和B细胞活性,增加调节性T细胞(Tregs),保护残余β细胞(Ezquer et al., 2012)。
抗炎作用
MSCs分泌IL-10、TGF-β,降低胰岛炎症,保护β细胞存活(Carlsson et al., 2015)。
改善胰岛素敏感性
MSCs释放外泌体及生长因子,促进肌肉和肝脏葡萄糖摄取,改善代谢平衡(Zhou et al., 2016)。
组织修复与血管生成
MSCs分泌VEGF,促进胰腺微血管生成,为β细胞提供良好生存环境。
2. 临床研究证据
T1DM:自体或异体MSC移植可改善C肽水平,减少外源胰岛素需求,并部分恢复血糖控制(Hu et al., 2013; Carlsson et al., 2015)。
T2DM:脐带或骨髓来源MSC可改善空腹血糖、HbA1c及胰岛素敏感性,有些患者可减少药物或胰岛素使用(Hu et al., 2016)。
封装干细胞衍生β细胞可在早期试验中实现血糖响应性胰岛素分泌,无严重低血糖(Rezania et al., 2014)。
3. 干细胞治疗糖尿病的优势
针对根本病因:恢复β细胞功能,调节自身免疫。
多重疗效:免疫调节、抗炎、组织修复、代谢改善。
潜在长期血糖控制:部分患者可减少或停止外源胰岛素。
个性化治疗:自体或基因编辑干细胞可降低排斥,优化疗效。
结论
干细胞疗法提供了科学支持的、多维度的糖尿病治疗方案。通过β细胞功能恢复、免疫调节和胰岛素敏感性改善,干细胞为功能性改善或部分缓解糖尿病提供可能,补充传统治疗并推动再生医学在糖尿病领域的进展。
Connect
Expertise in stem cell therapies across Asia.
R&d Support
Contact
+86 19852875516
© 2025. All rights reserved.