Stem Cell Therapy for ALS: Mechanisms and Clinical Evidence
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of upper and lower motor neurons, leading to muscle weakness, atrophy, and eventual respiratory failure. Median survival is typically 3–5 years from symptom onset (Brown & Al-Chalabi, 2017). Current FDA-approved drugs, riluzole and edaravone, provide modest benefits but do not halt disease progression. Stem cell-based therapies have emerged as a potential disease-modifying approach aiming to protect existing motor neurons, modulate the immune environment, and promote neuroregeneration.
Stem Cell Therapy for ALS
1/11/20242 min read
Mechanisms of Action
Neuroprotection via Trophic Factor Secretion
Mesenchymal stem cells (MSCs) and neural progenitor cells (NPCs) secrete glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF), all of which have been shown to delay motor neuron degeneration in ALS models (Suzuki et al., 2007; Thomsen et al., 2014).
Immune Modulation
ALS pathogenesis involves chronic neuroinflammation, with overactivation of microglia and astrocytes contributing to neuronal death.
MSCs can shift microglia toward an anti-inflammatory M2 phenotype and reduce pro-inflammatory cytokines such as TNF-α and IL-1β (Uccelli et al., 2011).
Replacement of Supportive Glial Cells
Intraspinal transplantation of NPCs may replace dysfunctional astrocytes and oligodendrocytes, improving glutamate clearance and myelin maintenance (Kondo et al., 2014).
Exosome-Mediated Repair
Stem cell-derived extracellular vesicles carry miRNAs that regulate apoptosis and oxidative stress pathways in motor neurons (Bonafede & Mariotti, 2017).
Clinical Research Evidence
Phase I/II Intrathecal MSC Trials (USA, Israel, Korea)
Safety and feasibility confirmed in multiple studies (Petrou et al., 2016; Oh et al., 2015).
Some patients showed slower ALS Functional Rating Scale-Revised (ALSFRS-R) decline over 6–12 months.
NurOwn® Technology (BrainStorm Cell Therapeutics)
Uses autologous bone marrow-derived MSCs induced to secrete high levels of neurotrophic factors.
Phase II study reported a 45% reduction in ALSFRS-R decline rate in early-stage patients compared to placebo (Cudkowicz et al., 2022).
Intraspinal NPC Transplantation (Neuralstem Inc.)
Phase I trial demonstrated long-term graft survival and motor function stabilization in some patients for over 2 years (Glass et al., 2016).
Limitations and Future Directions
While early results are encouraging, stem cell therapy is not a cure for ALS. The benefits may be time-sensitive—patients in early disease stages respond better, likely due to the preservation of more motor neurons. Future research should focus on:
Optimizing cell type and delivery method (intrathecal vs. intraspinal)
Combination therapy with neuroprotective drugs
Long-term safety monitoring for tumorigenesis and ectopic differentiation
Conclusion
Stem cell therapy for ALS holds disease-modifying potential by combining neuroprotection, immune regulation, and support for remaining motor neurons. While further large-scale randomized controlled trials are needed, existing evidence suggests that timely application could extend functional capacity and improve quality of life in ALS patients.
Key References:
Brown RH Jr, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med. 2017;377(2):162–172.
Suzuki M, et al. GDNF secreting human neural progenitor cells protect motor neurons in a rat model of ALS. J Clin Invest. 2007;117(11):3220–3229.
Petrou P, et al. Safety and clinical effects of intrathecal injection of autologous mesenchymal stromal cells in ALS: a phase I/II study. JAMA Neurol. 2016;73(3):337–344.
Cudkowicz M, et al. Phase 2 randomized trial of NurOwn® in ALS. Muscle Nerve. 2022;65(3):276–287.
Glass JD, et al. Intraspinal stem cell transplantation in ALS: phase I trial results. Neurology. 2016;87(4):392–400.
中文版本 — 干细胞治疗ALS的作用机制与临床证据
引言
肌萎缩侧索硬化症(ALS)是一种进行性神经退行性疾病,其特征为上、下运动神经元持续丢失,导致肌无力、萎缩及呼吸衰竭。患者从症状出现到死亡的中位生存期约为3–5年(Brown & Al-Chalabi, 2017)。目前获批药物利鲁唑与依达拉奉仅能延缓病程,无法逆转疾病。
近年来,干细胞疗法因其保护运动神经元、调节免疫环境、促进神经修复的潜力,成为ALS研究的热点。
作用机制
分泌神经营养因子,发挥神经保护作用
间充质干细胞(MSCs)及神经前体细胞(NPCs)可分泌GDNF、BDNF、VEGF等营养因子,延缓运动神经元变性(Suzuki et al., 2007; Thomsen et al., 2014)。
免疫调节
ALS的病理过程伴随慢性神经炎症,小胶质细胞与星形胶质细胞过度激活。
MSCs可诱导小胶质细胞向抗炎的M2型转化,并抑制TNF-α、IL-1β等炎症因子(Uccelli et al., 2011)。
替代支持性胶质细胞
脊髓内移植NPCs可替代失能的星形胶质细胞与少突胶质细胞,从而改善谷氨酸清除和髓鞘维护(Kondo et al., 2014)。
外泌体介导修复
干细胞来源的外泌体携带miRNA,可调控运动神经元的凋亡与氧化应激相关通路(Bonafede & Mariotti, 2017)。
临床研究证据
MSC鞘内注射(美、以、韩多国I/II期研究)
多项研究确认安全性与可行性(Petrou et al., 2016; Oh et al., 2015)。
部分患者ALSFRS-R评分下降速度在6–12个月内减缓。
NurOwn®技术(BrainStorm公司)
利用自体骨髓MSCs诱导高水平分泌神经营养因子。
II期研究显示早期患者ALSFRS-R下降速度较安慰剂组降低45%(Cudkowicz et al., 2022)。
脊髓内NPC移植(Neuralstem公司)
I期研究显示移植物长期存活,部分患者运动功能在2年以上保持稳定(Glass et al., 2016)。
局限与展望
干细胞治疗ALS尚不能治愈疾病,但早期介入可能延长功能维持时间。未来研究需解决:
优化细胞类型与输注途径(鞘内 vs. 脊髓内)
联合神经保护药物的多模式治疗
长期随访安全性(肿瘤风险、异位分化)
结论
干细胞治疗ALS通过神经保护、免疫调节及维持剩余运动神经元功能,有望延缓病程。尽管仍需大规模随机对照试验证实,但现有证据提示,在病程早期实施干细胞治疗,可能显著改善ALS患者的生活质量。
Connect
Expertise in stem cell therapies across Asia.
R&d Support
Contact
+86 19852875516
© 2025. All rights reserved.